Mostrando entradas con la etiqueta Fitoplancton. Mostrar todas las entradas
Mostrando entradas con la etiqueta Fitoplancton. Mostrar todas las entradas

Florecimiento de fitoplancton cerca de las islas Pribilof de Alaska



Image Credit: NASA/Landsat 8

El Operational Land Imager (OLI) en el satélite Landsat 8 capturó esta vista de un florecimiento de fitoplancton cerca de las islas Pribilof de Alaska el 22 de septiembre de 2014. Las Pribilofs están rodeadas de aguas ricas en nutrientes en el mar de Bering. El sombreado azul verde y luz lechoso del agua indica la presencia de grandes poblaciones de fitoplancton microscópico - en su mayoría cocolitóforos - que tienen escamas de calcita que aparecen en blanco en las imágenes de satélite. Tal fitoplancton forma la base de un hábitat tremendamente productivo para peces y aves.

Los florecimientos en el Mar de Bering aumentan significativamente en primavera, después de la desaparición de la cubierta de hielo de invierno y los nutrientes en el agua fresca son abundantes cerca de la superficie del océano. Las poblaciones de fitoplancton se desploman en verano cuando el agua se calienta, los nutrientes de la superficie se agotan por las floraciones, y los organismos similares a las plantas se agotan por el pastoreo peces, zooplancton, y otras especies marinas. En el otoño, las tormentas pueden remover nutrientes a la superficie y las aguas más frías aportan mejores condiciones para la floración.

 Fuente: Coloring the Sea Around the Pribilof Islands

El CO2 impulsa el aumento de medusas en el Mediterráneo



Los mares y océanos son uno de los sumideros de carbono más grandes del planeta. Una trabajo fundamental para mitigar el cambio climático. La mitad del CO2 de origen antropogénico, aquel que no se produciría de no ser por la mano del hombre, se concentra en la atmósfera; la otra está almacenada entre los bosques y las masas de agua. Pero este secuestro de carbono de los mares y océanos está causando estragos en la biodiversidad submarina, ya que el dióxido de carbono se disuelve en contacto con el agua del mar transformándose en ácido. 

Solo en los últimos 30 años, la acidificación del Mediterráneo ha aumentado un 10%; y de mantenerse el nivel de emisiones de CO2 a la atmósfera, en las próximas cuatro décadas podría crecer un 30%, según revela el estudio MedSea, financiado por la Comisión Europea. Este proceso amenaza la biodiversidad del mar y la economía de sectores tan potentes en la región mediterránea como el turismo y la pesca por la reducción de peces y moluscos y el aumento de medusas.


A la acidificación mar se le une también el calentamiento del agua. El estudio asegura que en los últimos 25 años la temperatura del Mediterráneo ha aumentado 0,67 grados; y en 2050, "si no se implementan medidas para reducir las emisiones de carbono", lo hará entre 1 y 1,5 grados. "En los últimos años los procesos de acidificación y calentamiento del agua han sido rapidísimos", ha advertido Patrizia Ziveri, investigadora del Instituto de Ciencia y Tecnología Ambiental (ICTA) de la universidad Autónoma de Barcelona y coordinadora del estudio.


La combinación de aumento de las concentraciones de ácido y de la temperatura del agua afectará  al fitoplancton y al zooplancton, base de la cadena trófica, por lo que gran cantidad de especies de peces verán amenazada su superviviencia. Los principales beneficiados de la merma en la población de peces son las medusas, que, además de perder a sus depredadores naturales, soportan mejor la acidificación y el calentamiento del agua. 


Un varapalo para las zonas turísticas. A falta de definir las consecuencias socioeconómicas en toda la región mediterránea, el estudio señala problemas locales. "Un brote de medusas en la costa de Israel podría reducir el número de viajeros entre un 3% y un 10,5%. Lo que provocaría unas pérdidas para la región de entre 2,4 y 4,6 millones de euros", apunta el estudio. Y en las Islas Medas (Girona), prosigue, la desaparición de las Gorgonias, una especie de alga, comportaría pérdidas por valor de cuatro millones de euros.


Según advierte el estudio, el impacto sobre las especies que viven en el Mediterráneo no será igual, ya que "los organismos presentan diferentes sensibilidades". Las praderas marinas y los arrecifes de coral son los ecosistemas que más sufren la acidifiación y el aumento de la temperatura del agua en el Mediterráneo. "Se trata de ecosistemas que construyen ecosistemas sorprendentes, que dan hogar de otros miles de especies, protegen la costa de la erosión y proporcionan comida y productos naturales a la sociedad", destaca el profesor Maoz Fine, de la universidad Ball-Ilan de Israel.


El texto pone de relieve la alta "sensibilidad" de algunas especies de los moluscos bivalvos (mejillones, ostras, almejas, etc.) al calentamiento del mar y al cambio en los niveles de PH, efecto directo de la acidificacióndel agua. "Ya hemos observado la alta mortalidad de estas especies cuando la temperatura del agua sube en verano", ha revelado Ziveri, que advierte: "La industria de la acuicultura de estas especies en el este del Mediterráneo de moluscos generó más de 225 millones de euros en 2012".


Fuente: El pais


Imagen Carabela portuguesa (Physalia physalis)

Nota



Gorgonia -  Es el nombre común genérico para referirse a cualquier especie de octocoral con esqueleto córneo, incluido en los subordenes Calcaxonia,Holaxonia o Scleraxonia. Si bien es cierto, que algunas especies de este género, como G. flabellum o G. ventalina, son quizás las más conocidas popularmente; de ahí proviene el nombre común genérico. Su estructura es ramificada, en la mayoría de especies en forma de abanico, y crece en un sólo plano. Forman estructuras en forma de redes interconectadas, compuestas de pequeñas ramitas fusionadas en mallas tupídas. El color de la estructura, que hace las veces de esqueleto, es púrpura, blanco o morado.

Los pólipos, normalmente de color marrón, amarillo o dorado, crecen alineados en las ramas, también en un sólo plano y espaciados regularmente. Los de algunas especies, liberan terpenoides que afectan negativamente a otros corales. Siendo en ocasiones, un arma para competir por el espacio y la luz en el arrecife.
Algunas especies alcanzan los 2 m de altura, por otro tanto de ancho.
Fuente wikipedia


El fitoplancton usa las turbulencias para moverse

This is an amazing view of a large phytoplankton bloom currently taking place in the South Atlantic Ocean  
Una masiva floración de fitoplancton. 
Image credits: ESA

 Se ha creído durante mucho tiempo que las diminutas plantas marinas, o fitoplancton, eran vagabundos pasivos en el mar - que no podían desafiar incluso las corrientes más débiles, o viajar por su propia voluntad. En décadas recientes, la investigación ha demostrado que muchas especies de estos microorganismos unicelulares pueden nadar, y lo hacen para optimizar la exposición a la luz, evitar a los depredadores o acercarse a otros de su especie.
Ahora científicos del MIT y la Universidad de Oxford han demostrado que la motilidad del fitoplancton también ayuda a determinar su destino en la turbulencia del océano. En lugar de actuar para distribuirse de manera uniforme - como exigiría la física de pequeñas partículas mezcladas en un fluido - los vórtices individuales que componen las turbulencias del océano son como mezcladores sociales para el fitoplancton, con lo que las células similares estrechan la proximidad, mejorando potencialmente la reproducción sexual y otras actividades ecológicamente deseables.

En un artículo que aparece en Internet el 15 de julio en Nature Communications, William Durham de Oxford, Roman Stocker del MIT y los co-autores, describen cómo en una escala de milímetros el fitoplancton atrapado en una forma de vórtice acuoso forma parches muy concentrados en el centro de la espiral. En el turbulento océano, donde se forman continuamente vórtices de corta duración, este proceso se repite, llevando a los microorganismos de un mezclador social a otro mezclador social.
Los resultados van en contra de porque la turbulencia es la forma más rápida de mezclarse dos sustancias (imagina el agitar la leche en el café). Si no fueran capaces de nadar, los microorganismos expuestos a un vórtice marino formarían una distribución homogénea en el agua. En cambio, el estudio muestra que la turbulencia hace que el fitoplancton forme manchas concentradas.

"Turbulencia sin mezcla"

"En base a nuestra intuición de la turbulencia y la mezcla turbulenta, esperábamos que reinase la homogeneidad", dijo Stoker profesor asociado de ingeniería civil y ambiental que dirigió el estudio. "En su lugar, el fitoplancton nos sorprendió mediante la formación de grupos de células altamente concentradas - es una turbulencia sin mezcla. Para el fitoplancton, este es un vehículo para encontrar eficazmente las células de la misma especie sin necesidad de ningún tipo de información sensorial en la localización de cada una o invertir en costosos medios de comunicación química".
Pero esta distribución irregular también puede tener su lado negativo: el fitoplancton, los microbios fotosintéticos del mar, forman la base de la cadena alimenticia del océano. Las agrupaciones de células pueden convertirse en presa fácil para los depredadores zooplancton que se adentran en grupos de fitoplancton. Y las células muy juntas pueden aumentar la competencia entre los microorganismos sobre los alimentos dispersos.

"A pesar de que la agregación aumenta la posibilidad de un encuentro fatal con un depredador, también aumenta la posibilidad de encontrar otras células de fitoplancton, lo que es necesario para formar quistes resistentes que pueden sobrevivir a las duras condiciones del invierno", dijo Durham, autor principal del trabajo y profesor en la Universidad de Oxford, que comenzó a trabajar en este estudio como estudiante de doctorado en el MIT. "Este mecanismo sugiere que el fitoplancton puede sintonizar su motilidad para tener lo mejor de ambos mundos, minimizando la agregación cuando hay una gran cantidad de depredadores en torno, al tiempo que maximiza la agregación cuando el tiempo no es el ideal con la formación de quistes".

El equipo de investigación - que incluye al estudiante graduado del MIT Michael Barry, Eric Climent de la Universidad de Toulouse, Filippo De Lillo y Guido Boffetta de la Universidad de Torino y Massimo Cencini del Centro Nacional de Investigación de Italia - realizó los primeros experimentos con fitoplancton en el laboratorio, y luego extendió sus observaciones a un océano turbulento con simulaciones de alta resolución realizadas en una supercomputadora.

Posible adaptación evolutiva

Para los experimentos, una caja transparente con forma de la letra H formó una versión simplificada del mar, con el agua de mar fluyendo hacia arriba a través de unas barras verticales, creando dos vórtices internos dirigidos dentro de la barra horizontal. Cuando los investigadores agregaron Heterosigma akashiwo (una especie móvil de marea roja conocida por su capacidad para matar a los peces), los microorganismos formaron densas manchas en los centros de los remolinos. Para destacar el papel de la movilidad, los investigadores repitieron el experimento con microorganismos muertos, que la turbulencia distribuyó uniformemente.

La simulación por ordenador imitaba la turbulencia del océano en una escala más grande, con más de 3 millones de fitoplancton y muchos vórtices interactuando que se forman en la escala más pequeña posible de la turbulencia. Se encontró que la agregación aumentó más de diez veces cuando el fitoplancton nadaba. Y a medida que aumentaba la velocidad, también aumentaba la agregación, lo que lleva a la conjetura de que, en escalas de tiempo de evolución, los microorganismos pueden posiblemente haber desarrollado la capacidad de adaptar activamente su velocidad de natación para modular las interacciones con otros de la misma especie y con los depredadores.
"Creo que este trabajo abre un amplio espectro de cuestiones evolutivas fascinantes", dice Simon Levin, de George M. Moffett Professor of Biology en la Universidad de Princeton. La motilidad en turbulencias "es una propiedad emergente de la selección para los comportamientos que conducen a la agregación. Por supuesto, la agregación podría ser un subproducto en lugar de la meta, en el sentido de que los organismos están convergiendo en sus comportamientos a lo que es individualmente óptimo. Pero la idea de esto es que podrían evolucionar porque los individuos se desempeñan mejor en las agregaciones - a causa de la reproducción, la captura de los recursos o la seguridad proveniente contra los depredadores - es muy intrigante".
"La vida es turbulenta en las vastas extensiones del océano - y es fascinante aprender que algunos de los organismos más importantes de nuestro planeta comen y se comportan en sus vidas diarias turbulentamente", añade Stocker.

ArtÍculo científico:Turbulence drives microscale patches of motile phytoplankton




 


Nota: (wikipedia)
Importancia ecológica del fitoplancton El fitoplancton se encuentra en la base de la cadena alimentaria de los ecosistemas acuáticos, ya que sirve de alimento a organismos mayores; es decir realiza la parte principal de la producción primaria en los ambientes acuáticos, sobre todos los animales marinos. Pero además de eso, el fitoplancton es el responsable original de la presencia de oxígeno (O2) en la atmósfera. La fotosíntesis oxigénica apareció evolutivamente con las cianobacterias, antepasadas además de los plastos de las algas eucarióticas. Durante casi 2.000 millones de años, hasta el desarrollo de las plantas terrestres, la fotosíntesis estuvo prácticamente restringida a los mares. La mayor parte de la producción primaria fotosintética de los mares, entonces como ahora, es atribuible al fitoplancton, con una parte menor debida a organismos bentónicos. 

Extraordinario florecimento de fitoplancton en el mar de Noruega



Iceland Sea in Bloom


Las aguas de Islandia están entre las pesquerías más productivas del mundo. La razón de la abundancia es una amplia oferta de fitoplancton, la base de la cadena alimenticia marina. Al igual que cualquier otra planta, el fitoplancton microscópico necesita para sobrevivir luz solar y nutrientes.

Las aguas costeras de Islandia ofrecen tanto uno como otro durante los largos días de verano. 

El espectrorradiómetro de imágenes de resolución moderada (MODIS), volando a bordo del satélite Aqua de la NASA tomó esta imagen de color verdadero  de un gran florecimiento de fitoplancton en el Mar de Noruega, cerca de Islandia, el 6 de julio de 2013. 
La gama de colores de azul a verde lechoso sugieren que componen esta flor una variedad de diferentes especies , muy probablemente incluyendo diatomeas y quizás cocolitofóridos blancas calcáreos, dice Sergion Signorini, científico marino del Goddard Space Flight Center de la NASA. 

Flotando en el agua, el fitoplancton actúa marcando trazas  revelando el curso de las corrientes de mezcla y donde chocan los remolinos. Una rama de la Corriente del Atlántico Norte (la Corriente del Golfo) fluye hacia el norte, con lo que el agua cálida del Atlántico se mezcla con las corrientes frías del Ártico rodeando por el este. 



Fuente: Iceland Sea in Bloom


Bloom de fitoplancton en el Golfo de Vizcaya








La primavera ha traído una floración de fitoplancton abundante y de larga duración en el Golfo de Vizcaya, entre la costa occidental de Francia y el norte de España. Remolinos en la superficie del agua de colores verde, turquesa y cian, muestran la ubicación de estos organismos microscópicos, similares a las plantas, a la vez que se mueven con las corrientes y los mezclan produciendo los remolinos. 

 El fitoplancton está siempre presente en el agua, pero la luz del sol más fuerte en esta la temporada, así como los aportes de sedimentos ricos en nutrientes del agua dulce que fluye de la tierra, hacen que estas prodigiosas floraciones puedan durar semanas o meses. Las floraciones pueden ser una bendición para algunas especies marinas, ya que estas pequeñas plantas flotantes son alimento habitual de muchas de ellas, desde el zooplancton, hasta peces y ballenas. Sin embargo, algunas algas y plancton se pueden convertir en peligrosas, ya sea a través de la producción de toxinas químicas o al agotar gravemente el suministro de oxígeno en el océano creando "zonas muertas " que afixían a las criaturas marinas. 

Los satélites de la NASA fotografiaron estas imágenes de color natural de la Bahía de Vizcaya llena de fitoplancton en la primavera de 2013. El espectrorradiómetro de imágenes de resolución moderada (MODIS) del satélite Terra captó la imagen de arriba el 4 de mayo. El instrumento MODIS en el Aqua adquirió la imagen de abajo el 20 de abril. La tercera imagen de la floración  corresponde al 2 5 de abril


 Se observa cómo aparece la floración para seguir avanzando en alta mar. Estas floraciones tienden a ocurrir en la zona cada mes de marzo y abril, acabando en mayo, cuando se agotan y cambian las condiciones del océano y los nutrientes superficiales. Los colores de las flores provienen en su mayoría de los pigmentos del fitoplancton, que utilizan la clorofila para convertir la luz solar en combustible (fotosíntesis), algunos de los colores también son atribuibles a los minerales en las bellas conchas de estos organismos. Los cocolitóforos , por ejemplo, producen una concha de calcita (piedra caliza) que puede dar al agua un aspecto lechoso.

Fuente: earthobservatory.nasa.gov

  1. European Space Agency (2005, May 6) Earth from Space: The Bay of Biscay. Accessed May 10, 2013.
  2. NASA Earth Observatory (2010, July 13) What Are Phytoplankton?
  3. NASA Earth Observatory (2004, May 18) Bay of Biscay in Bloom.
NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Michael Carlowicz.
Instrument: 
Terra - MODIS

El plancton es una "esponja"de carbono

 Algenblüte in der Barentssee: Plankton kann CO2-hungriger sein als gedacht IMAGEN: ESA

El plancton es una "esponja"de carbono

Su composición apunta a que puede absorber el doble de dióxido de carbono de lo que se creía.

 La necesidad ha llevado a los investigadores a revisar los paradigmas establecidos. Y uno que hasta la fecha no se había tocado era la llamada relación de Redfield, que desde los años treinta del siglo pasado había fijado la proporción de carbono, nitrógeno y fósforo del plancton. Pues resulta que esa regla estaba infravalorada, según publican investigadores de la Universidad de California en Irvine en Nature Geoscience.

 Es un dato importante. Estos tres nutrientes son clave para el desarrollo de la vida, pero también es un indicador de la capacidad de los organismos marinos para echar una mano al ser humano en su lucha, por ejemplo, contra los gases de efecto invernadero. Y es que la proporción de carbono que es absorbido por el plancton es el doble de lo que el oceanógrafo estadounidense había predicho.

 La répartition de la chlorophylle dans les océans est un indicateur des zones de floraison du phytoplancton. Présents uniquement dans la couche de surface des océans, puisque nécessitant la lumière solaire pour la photosynthèse, ces micro-organismes sont majoritairement répartis dans les zones d'upwelling des océans.© Nasa

 Para llegar a estas conclusiones los investigadores han tomado medidas a diferentes profundidades en varias localizaciones (Bermudas, Hawai, pero también en el mar de Bering o las costas frente a Dinamarca), además de utilizar datos recogidos por otros observadores.

Elegir lugares tropicales y otros muy fríos ha sido determinante para las conclusiones del trabajo. Redfield, con las mediciones de la época, había determinado una proporción fija entre la cantidad de carbono, nitrógeno y fósforo que debía contener el plancton estuviera donde estuviera. Pero ha resultado que no. Las proporciones de los tres elementos clave para la vida (no en vano nitrógeno y fósforo son componentes de fertilizantes también en tierra firme) varían en función de la latitud, y es en las zonas más cerca del Ecuador (más cálidas) donde proporcionalmente hay más carbono.

 Modelo de Dióxido de Carbono en los océanos indica que las aguas cálidas atrapan

 Modelo de Dióxido de Carbono en los océanos indica que las aguas cálidas atrapan el doble de CO2. (Leslie Carlson/UCIrvine)

El resultado es que el mar —o, mejor dicho, esa sopa de animales y algas microscópicas que forman el plancton— puede absorber, según estos nuevos estudios, hasta el doble de CO2 del que se creía. Cuando muchos esfuerzos se dirigen a buscar sumideros y sitios donde almacenar los gases emitidos por las fábricas para limitar el efecto invernadero, este revolcón a una teoría de 80 años abre una nueva posibilidad.

Artículo científico: Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter 


Descubren masivas floraciones de fitoplancton bajo el hielo Ártico

Bloom_in_the_Ross_Sea
True-color satellite image of a phytoplankton bloom in the Ross Sea on January 22, 2011. Bright greens are plant life, deep blues are open ocean water; bright white are glaciers and snow. (NASA image courtesy Norman Kuring, Ocean Color Team at NASA Goddard Space Flight Center)


El adelgazamiento de los hielos propicia que se multiplique por 10 la producción del fitoplancton
Mediante el uso de tecnologías ópticas, científicos de la NASA han descubierto que el adelgazamiento del hielo ártico está permitiendo que la luz del sol llegue a las aguas bajo el hielo del mar, facilitando masivas floraciones de fitoplancton. Se estima que la producción de fitoplancton en el hielo en algunas partes del Ártico podría ser hasta 10 veces más alta que en el océano abierto cercano. Este rápido crecimiento del fitoplancton consume grandes cantidades de dióxido de carbono y puede causar alteraciones en la cadena alimentaria de las diferentes especies y tener implicaciones en el ciclo global del carbono y en el equilibrio energético marino 


Un equipo de científicos ha hecho un descubrimiento biológico en las aguas del Océano Ártico, tan sorprendente como encontrar un bosque en medio de un desierto, informa la NASA en un comunicado. Una expedición patrocinada por la NASA ha perforado a través de un metro de espesor del hielo marino para encontrar aguas más ricas en plantas marinas microscópicas --esenciales para toda la vida del mar-- que cualquier otra región del océano en la Tierra. 


El hallazgo revela una nueva consecuencia del calentamiento del clima del Ártico y proporciona una clave importante para comprender los impactos del cambio climático y el medio ambiente en el Océano Ártico y su ecología. El descubrimiento fue hecho durante una expedición oceanográfica de la NASA en los veranos de 2010 y 2011. 


La expedición, llamada ICESCAPE, o Impactos del Cambio Climático sobre los Ecosistemas y Química del Medio Ambiente Ártico del Pacífico, exploró las aguas del Ártico en los mares de Beaufort y Chukchi a lo largo de las costas oeste y el norte de Alaska a bordo de un rompehielos de la Guardia Costera de los EE.UU. Mediante el uso de tecnologías ópticas, los científicos examinaron los efectos de la variabilidad ambiental y el cambio en la biología marina, la ecología y biogeoquímica del Ártico. 


"Parte de la misión de la NASA es pionera en el descubrimiento científico y esto es como la búsqueda de la selva amazónica en medio del desierto de Mojave", dijo Paula Bontempi, biología de la NASA y director del programa de biogeoquímica marina en Washington. 


Cadena alimentaria marina 


Las plantas microscópicas llamadas fitoplancton son la base de la cadena alimentaria marina. El fitoplancton se cree que crece en el océano Ártico sólo después de que el hielo del mar se 
retiraba en verano. Los científicos ahora creen que el adelgazamiento del hielo ártico está permitiendo que la luz del sol llegue a las aguas bajo el hielo del mar facilitando auténticas floraciones de fitoplancton. Los hallazgos han sido publicados en el último número de la revista Science. 


"Si alguien me hubiera preguntado antes de la expedición que bajo el hielo se verían floraciones, yo les habría dicho que era imposible", dijo Kevin Arrigo de la Universidad de Stanford en Stanford, líder de la misión ICESCAPE y autor principal de la nuevo estudio. "Este descubrimiento fue una completa sorpresa". 


Los investigadores observaron floraciones bajo el hielo que se extendían desde el borde del hielo marino a más de cien kilómetros en la bolsa de hielo. Datos oceánicos revelaron que estas floraciones se habían desarrollado bajo el hielo y no se habían desviado allí desde aguas abiertas, donde las concentraciones de fitoplancton pueden ser altas. 


El fitoplancton bajo el hielo es sumamente activo, doblándose en número más de una vez al día. En aguas abiertas crece a un ritmo mucho más lento, duplicándose en dos o tres días. Estas tasas de crecimiento están entre el más alto jamás medido en las aguas polares. Los investigadores estiman que la producción de fitoplancton en el hielo en algunas partes del Ártico podría ser hasta 10 veces más alta que en el océano abierto cercano. 


Este rápido crecimiento del fitoplancton consume grandes cantidades de dióxido de carbono. El estudio concluye que los científicos tendrán que reconsiderar la cantidad de dióxido de carbono que entra en el Océano Ártico a través de su actividad biológica si las floraciones se demuestran comunes. 


"En este momento no sabemos si estos florecimientos de fitoplancton ricos han estado ocurriendo en el Ártico durante mucho tiempo porque simplemente no se han observado antes", dijo Arrigo. "Estos fenómenos podrían extenderse en el futuro, sin embargo, si la cubierta de hielo marino del Ártico continúa adelgazando". 


Hasta ahora, los investigadores pensaban que en el Océano Ártico, el hielo del mar bloqueaba la mayoría de la luz solar necesaria para el crecimiento del fitoplancton. Pero en las últimas décadas el hielo más joven y delgado ha sustituido gran parte de los hielos más antiguos y más gruesos del Ártico. Este hielo joven es casi plano y las lagunas que se forman cuando la capa de nieve se derrite en el verano se extienden mucho más que las zonas de hielo rugoso mayor. 


Estos estanques de fusión grandes pero poco profundos actúan como ventanas hacia el océano, dejando que grandes cantidades de luz solar pase a través del hielo para llegar al agua profunda, dijo Donald Perovich, geofísico del Ejército de EE.UU. y de Laboratorio de Ingeniería en Hanover, New Hampshire, que estudió las propiedades ópticas de los hielos durante la expedición ICESCAPE. 


Implicaciones ambientales 


El descubrimiento de estas floraciones desconocidas bajo el hielo tiene más implicaciones para el más amplio ecosistema del Ártico, incluidas las especies migratorias como las ballenas y las aves. El fitoplancton alimenta a los peces más pequeños del océano, los cuales a su vez alimentan a peces más grandes y a los animales del océano. Un cambio en los tiempos de la floración oceánica puede causar alteraciones en la cadena alimentaria de las diferentes especies y tener implicaciones asimismo en el ciclo global del carbono y en el equilibrio de la energía de los océanos. “Este descubrimiento supone que tenemos que revisar nuestra comprensión de la ecología del Ártico y el papel de esta región en el sistema planetario global”, dijo Paula Bontempi. 


Artículo científico:

Massive Phytoplankton Blooms Under Arctic Sea Ice

http://www.sciencemag.org/content/early/2012/06/06/science.1215065


EL FITOPLANCTON MARINO PODRÍA SER CLAVE PARA LA FUTURA SALUD DEL PLANETA

The Eddy and the Plankton




The Eddy and the Plankton - The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra




El fitoplancton proporciona oxígeno a medio planeta
El océano puede absorver 45 millones de toneladas de dióxido de carbono al año
El pequeño 'Fitoplancton' marino tienen un gran impacto sobre el clima de la Tierra - y comprenderlo podría ser clave para la futura salud del planeta.
La científico canadiense María Maldonado está investigando por qué el fitoplancton crece en algunas zonas y cómo sobrevive en áreas con condiciones hostiles.


Las pequeñas algas unicelulares absorben 45 millones de toneladas de dióxido de carbono cada año - transfiriendo 16 millones de toneladas a las profundidades del océano. Ellas proporcionan la mitad del suministro de oxígeno del planeta.


Entenderlo es vital para la comprensión de la regulación de la salud de nuestro planeta, dice Maldonado.


Maldonado presentó su investigación en la 178ª sesión anual de la Asociación Americana para el Avance de la Ciencia, en Vancouver.


El océano profundo es uno de los 'sumideros' de carbono natural de la Tierra y entierra el carbono de la atmósfera durante siglos.


La bomba biológica de carbono controla el contenido de dióxido de carbono en la capa superior del océano, que a su vez regula los niveles atmosféricos de dióxido de carbono y, como resultado, controla el cambio climático.


Los científicos han establecido que las bajas concentraciones de hierro limitan el crecimiento del fitoplancton del agua del océano, ya que el fitoplancton usa el hierro para crecer.


En estos entornos limitados de hierro (que constituyen aproximadamente el 30 por ciento de los océanos del mundo), la bomba biológica se convierte en ineficiente y se reduce la capacidad del océano para absorber dióxido de carbono.


Durante los últimos 20 años, Maldonado ha estado examinando cómo se adapta y sobrevive el fitoplancton en estos ambientes limitados de hierro.


"En esencia, lo que se ilustra es que han evolucionado para hacer frente a la limitación de hierro, y estamos tratando de averiguar cómo se han adaptado para tomar el hierro de manera más eficiente", dice.


Enlace: http://www.aaas.org/meetings/2012/


Nota:


El plancton vegetal, denominado fitoplancton, se desarrolla en las aguas costeras del mar con luz solar y sales minerales abundantes (aguas de hasta 30 m de profundidad), dado que elaboran su alimento por fotosíntesis.
Constituyen el alimento del zooplacton y producen el 50% del oxígeno molecular necesario para la vida terrestre. Los organismos que más abundan en el fitoplancton son las cianobacterias y las diatomeas, unas algas doradas unicelulares. También encontramos a los dinoflagelados, responsables de las mareas rojas.
Base de la cadena trófica marina, el fitoplancton ha experimentado un significativo descenso debido al aumento de la radiación ultravioleta. Se ha observado que bajo el agujero de ozono en la Antártida la productividad del fitoplacton decreció entre el 6% y el 12%.
Fuente: Wikipedia

BLOOM DE FITOPLANCTON EN EL ATLÁNTICO SUR, VISTO DESDE EL ESPACIO

imagen de fitoplancton en el Atlántico Sur, satélite Evisat


Crédito imagen: European Space Agency


El fitoplancton forma la base de la cadena alimentaria marina y juega un papel muy importante en la eliminación del dióxido de carbono de la atmósfera


Las algas microscópicas crean una figura de color azul brillante en forma de 8 en una nueva foto tomada por un satélite europeo de observación terrestre.
Microorganismos fotosintéticos llamados fitoplancton crearon la figura del 8 en el sur del océano Atlántico, a unas 360 millas (600 kilómetros) al este de las Islas Malvinas. La nave de la Agencia Espacial Europea, Envisat, adquirió la imagen el 2 de diciembre de 2011.


Tal proliferación de algas oceánicas son comunes en la primavera y el verano del hemisferio sur, cuando la surgencia aporta los minerales de las aguas más profundas a la superficie, dijeron los investigadores. El fitoplancton dependen de estos minerales, y los organismos proliferan como consecuencia de ello.


Diferentes tipos y cantidades de fitoplancton producen floraciones de diferentes colores, como los azules y verdes se ven en la nueva imagen. Analizando tales imágenes por satélite, los científicos pueden controlar las floraciones y obtener una idea de las especies involucradas.


Algunas algas pueden ser tóxicas, envenenando peces y otros animales marinos a gran escala. Cuando se producen en las aguas costeras, las floraciones nocivas se refieren a menudo como "mareas rojas" y pueden afectar a la pesca y la salud humana.


El fitoplancton forma la base de la cadena alimentaria marina y juega un papel muy importante en la eliminación del dióxido de carbono de la atmósfera y la producción de oxígeno en los océanos del mundo. Así que los científicos están interesados ​​en controlar estos pequeños organismos, para tener una mejor idea de la salud del ecosistema y controlar posibles impactos del cambio climático.


La nave espacial Envisat de 8,8 toneladas, que se lanzó en 2002, es el satélite no militar más grande jamás construido que observa la Tierra. La nave de un costo de $ 2.3 mil millones lleva un conjunto de 10 instrumentos diferentes, con los que monitorea la tierra del planeta, los océanos, la atmósfera y los casquetes de hielo de forma continua.


Envisat tomó las fotos con su nuevo medio Resolution Imaging Spectrometer (MERIS), un instrumento que mide la radiación solar reflejada por la Tierra. Las imágenes de MERIS tienen una resolución de 1.000 pies (300 metros).
Artículo ESA :http://www.esa.int/export/esaEO/SEMB88KX3XG_index_0.html