(Basado fuertemente en una idea del filósofo Chris Freiling)
Tomemos un cuadrado... que en realidad puede ser cualquiera, pero, para facilitar la explicación, supondremos que es el cuadrado cuyos vértices son los puntos (0,0), (0,1), (1,0) y (1,1). A su vez, sobre cada punto (t, 0),con t entre 0 y 1, dibujaremos un segmento vertical de longitud 1, y en cada uno de esos segmentos pintaremos algunos puntos.
Aunque en el segmento que se muestra en el dibujo sólo hay "pintada" una cantidad finita de puntos, supondremos que, en realidad, en cada segmento vertical hemos pintado una cantidad numerable de puntos. Tenemos, entonces, el siguiente teorema:
La Hipótesis del Continuo es falsa si y sólo si, no importa cómo se decida pintar los puntos, siempre existirán números x e y (ambos entre 0 y 1) tales que los puntos (x,y) y (y,x) quedan sin pintar. En otras palabras, la Hipótesis del Continuo es equivalente a que existe una manera de pintar los puntos para la cual en toda pareja (x,y) y (y,x), al menos uno de ambos puntos queda pintado.
Vamos a demostrar este teorema.
Supongamos primero que la Hipótesis del Continuo es verdadera. Es posible, entonces, definir en el intervalo [0,1] un buen orden equivalente a $\Omega $ (para más detalles, véase "El Omegón y todo eso,.." en este mismo blog). Pintamos entonces todos los puntos (x,y) tales que y es menor o igual que x según el buen orden antes indicado. Por lo tanto, sobre cada x ha quedado pintada una cantidad numerable de puntos, y siempre sucede que, de (x,y) o (y,x), al menos uno de los dos queda pintado.
Recíprocamente, supongamos que la Hipótesis del Continuo sea falsa; y que los puntos han sido pintados de alguna manera. Como la Hipótesis del Continuo es falsa, podemos definir en [0,1] un buen orden equivalente a un ordinal mayor que $\Omega $.
Pensemos ahora en todos los puntos (x,y) pintados para los cuales x es, según el buen orden mencionado, menor que $\Omega $. Como las segundas coordenadas de estos puntos forman un conjunto de cardinal $\aleph _1$ entonces existe un $y_0$ que no pertenece a él (porque estamos suponiendo que [0,1] tiene cardinal mayor que $\aleph _1$). Es decir, para todo $x < \Omega $, $(x,y_0)$ no está pintado.
Pero el conjunto de todos los $x < \Omega $ tiene cardinal $\aleph _1$ y los puntos pintados sobre $y_0$ forman un conjunto numerable. Luego, existe un $x_0 < \Omega $ tal que $(y_0,x_0)$ no está pintado. Pero, por lo dicho más arriba, $(x_0,y_0)$ tampoco está pintado. Esto finaliza la demostración del teorema.
La Hipótesis del Continuo es falsa si y sólo si, no importa cómo se decida pintar los puntos, siempre existirán números x e y (ambos entre 0 y 1) tales que los puntos (x,y) y (y,x) quedan sin pintar. En otras palabras, la Hipótesis del Continuo es equivalente a que existe una manera de pintar los puntos para la cual en toda pareja (x,y) y (y,x), al menos uno de ambos puntos queda pintado.
Vamos a demostrar este teorema.
Supongamos primero que la Hipótesis del Continuo es verdadera. Es posible, entonces, definir en el intervalo [0,1] un buen orden equivalente a $\Omega $ (para más detalles, véase "El Omegón y todo eso,.." en este mismo blog). Pintamos entonces todos los puntos (x,y) tales que y es menor o igual que x según el buen orden antes indicado. Por lo tanto, sobre cada x ha quedado pintada una cantidad numerable de puntos, y siempre sucede que, de (x,y) o (y,x), al menos uno de los dos queda pintado.
Recíprocamente, supongamos que la Hipótesis del Continuo sea falsa; y que los puntos han sido pintados de alguna manera. Como la Hipótesis del Continuo es falsa, podemos definir en [0,1] un buen orden equivalente a un ordinal mayor que $\Omega $.
Pensemos ahora en todos los puntos (x,y) pintados para los cuales x es, según el buen orden mencionado, menor que $\Omega $. Como las segundas coordenadas de estos puntos forman un conjunto de cardinal $\aleph _1$ entonces existe un $y_0$ que no pertenece a él (porque estamos suponiendo que [0,1] tiene cardinal mayor que $\aleph _1$). Es decir, para todo $x < \Omega $, $(x,y_0)$ no está pintado.
Pero el conjunto de todos los $x < \Omega $ tiene cardinal $\aleph _1$ y los puntos pintados sobre $y_0$ forman un conjunto numerable. Luego, existe un $x_0 < \Omega $ tal que $(y_0,x_0)$ no está pintado. Pero, por lo dicho más arriba, $(x_0,y_0)$ tampoco está pintado. Esto finaliza la demostración del teorema.